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Summary 

Chub mackerel (Scomber japonicas) is key economic and ecological specie in the Northwest Pacific 

Ocean. Most of the Chub mackerel catch is harvested by the lighting purse seine fishery in China. In this 

paper, we standardized catch per unit fishing effort (CPUE) using generalized linear model 

(GLM) and generalized additive model (GAM). Four groups of independent variables were 

considered in the CPUE standardization: spatial variables (latitude and longitude), temporal 

variables (year and month), vessel length and environmental variables (SST, SSH and Chl-a). 

Log-CPUE was treated as the dependent variable and its error was assumed to follow normal 

distribution in each model. The model selections of GLM and GAM were based on the BIC. From 

the results, Higher Spearman’s correlation and lower mean squared error were observed by GAM. 

Besides, the standardized CPUE trend of GAM model is similar with that of nominal CPUE. 

Therefore, we prefer to choose the best GAM model to estimated standardized CPUE of Chub 

mackerel fishery. 
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1. Background of the Chub mackerel fishery 

Chub mackerel (Scomber japonicas) is a highly migratory fish, widely distributed in the high 

seas of the Northwest Pacific Ocean (Yukami., 2009). The annual catches of Chub mackerel 

recorded in 2019 were about 64,364 tons in China, which accounted for 14.00% of the global 

production. Now, about 50 Chub mackerel vessels from China operate in the Northwest Pacific 

Ocean. The main fishing area of China is shown in Figure 1.  

2 METHOD 

2.1 The data 

Full-commercial fishery data were from 2014-2019, which were derived from Technical 

Group for Chub mackerel Fishery, Distant-water Fishery Society of China. Distribution of catch 

(ton) and fishing effort for China Chub mackerel fishing fleets in the Northwestern Pacific Ocean 

from 2014 to 2019 was shown in Figure 2. The catch of Chub mackerel in region 146 - 155 °E 

and 39 - 44 °N is higher than other regions (Fig.2a). 

The Chub mackerel is a highly migratory fish, and the distribution of its fishing grounds 

shows large variation during the fishing period (April–November) each year (Yatsu, 2002), 

therefore, temporal variables (year and month), spatial variables (longitude and latitude) were 

included in the analysis. The distribution of the Chub mackerel fishing grounds is tightly 

associated with the marine environment (Zhang, 2009). Thus, Sea surface temperature (SST), Sea 

surface height (SSH), Chlorophyll-a concentration (Chla) were included in the analysis. In 

addition, the vessel length may affect the quantity of the catch, which was included in this study.  

SST data were derived from National Oceanic and Atmospheric Administration (NOAA; 

ftp.nodc.noaa.gov). The spatial-temporal resolution of the SST data is daily at 0.1°×0.1° grid. Sea 

surface height (SSH) data were derived from Archiving Validation and Interpolation of Satellite 

Oceanographic Data (AVISO; www.aviso.altimetry.fr). The spatial-temporal resolution of the data 

is SSH daily at 0.25°×0.25° grid. The monthly Chla data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) on board the satellite Aqua platform provided by Asia-Pacific Data 

Research Center were used for this study, The Chla data was from website: 

http://apdrc.soest.hawaii.edu/data/data.php. 

This study extracted the corresponding oceanographic data from the nearest grid to the grid 

where the fishery data existed at the same date. Nominal CPUE were defined as catch per day per 

vessel, unit: ton/day/v. 

Summary of explanatory variables used for CPUE standardization were listed in the table 1. 

ftp://ftp.nodc.noaa.gov/
http://www.aviso.altimetry.fr/
http://apdrc.soest.hawaii.edu/
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Year is a categorical variable of 6 years (2014–2019). Month is a categorical variable including 

the nine calendar months from April to December. Longitude and latitude are categorical 

variables, which divided at intervals of 1°. We attempted two cases (categorical and splined 

variable) for SST and investigated splined variable for Chla and SSH. Vessellength is a categorical 

or continuous variable of 44–61 m vessels, which will affect the catchability (Table1). 

Variance Inflation Factor (VIF) and Spearman correlation coefficient among explanatory 

variables were calculated (Table 2) and correlations among variables were shown in the Figure 3. 

2.2 Full model description and model selection 

Both generalized linear model (GLM) and generalized additive model (GAM) were used to 

standardize the CPUEs.  

The full GLM model was:  

log(CPUE) =Year + Month + Longitude_c + Latitude_c + SST + SSH + Chla +Vessellength_c + 

interaction+ε 

The full GAM model was:  

log(CPUE)= Year+ Month+ longitude_c + latitude_c + s(SST) + s(SSH) + s(Chla) + s(vessel 

length) +interaction+ε 

where  𝜀 is the residual, which is assumed to have a normal distribution. interaction is an 

interaction term representing the interactive effect of spatial and temporal factors for the Chub 

mackerel. Full model interaction includes all the possible combination of year, month, 

longitude_c, latitude_c.  

The optimal model was selected using the Bayesian information criterion (BIC). Spearman’s 

correlation between the predicted and observed CPUEs, and mean of squared errors between two 

CPUEs were calculated to evaluate prediction performance. 

2.3 Yearly trend extraction 

The way to calculate the standardization CPUE is the yearly mean of fitted CPUE from the 

best model. The formula is, 

𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑖 =

1

𝑛𝑖
× ∑ 𝐶𝑃𝑈𝐸𝑘

𝑓𝑖𝑡𝑡𝑒𝑑

𝑛𝑖

𝑘=1

 

where, 𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑖  is CPUE indices in ith year, 𝑛𝑖  is the observation number in ith year, 

𝐶𝑃𝑈𝐸𝑘
𝑓𝑖𝑡𝑡𝑒𝑑

 is the kth fitted CPUE data in ith year.  

The bootstrapped 95% confidence intervals of Standardized CPUE of the optimal GLM and 

GAM were calculated.  
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3 RESULT and DISCUSSION 

In this study we used two models to standardize the CPUEs. Variance Inflation Factor (VIF) 

and Spearman correlation coefficient among explanatory variables were calculated (Table1). The 

Maximum VIF<5, indicates there is no serious multi-collinearity (Tien, 2011). Residuals from 

both approaches showed an approximately normal distribution around 0, which indicated that the 

model assumptions were satisfied. The results were shown in Figure 4 and Figure 5.  

We used same explanatory variables in GLM and GAM analysis (Table 1).The result of the 

best GLM and GAM models are shown in Table 3 and Table 6 respectively. The summary of 

fitting a GLM for the optimal model is shown in Table 4. All explanatory variables are highly 

significant (p<0.01) except for SSH. The summary of fitting a GAM for the best model is shown 

in Table 7. All explanatory variables are highly significant (p<0.01) except for SSH.  

Table 9 and Figure 6 shows the annual changes of nominal CPUE and standardized CPUE by 

GAM and GLM models. There are few differences between fitted CPUEs data by GLM and GAM, 

which may be related to the assumption of relationships between CPUEs and explanatory 

variables.  

Comparing the results of cross validation tests in GLM and GAM analyses (Table 5 and 8), 

higher Spearman’s correlation and lower mean squared error (MSE) between observed and 

predicted of test data were observed by GAM, so we prefer to choose the best GAM model to 

estimate standardized CPUE. 

We standardized CPUE in accordance with the standardization protocol. The checklist is 

shown in Appendix 1. 
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APPENDICES 

Appendix1. Checklist for the CPUE standardization protocol 

(1) Conduct a thorough literature review to identify key 

factors (i.e., spatial, temporal, environmental, and 

fisheries variables) that may influence CPUE values; 

Yes (see 2.1 The data 

paragraph 2) 

(2) Determine temporal and spatial scales for data grouping 

for CPUE standardization; 

Yes (see table 1) 

(3) Plot spatio-temporal distributions of fishing efforts and 

catch to evaluate spatio-temporal patterns of fishing 

effort and catch;  

Yes (see Fig.2) 

(4) Calculate correlation matrix to evaluate correlations 

between each pair of those variables; 

Yes (see table 1 and 

Fig.3) 

(5) Identify potential explanatory variables based on (1)-(4) 

to develop full model for the CPUE standardization; 

Yes 

(6) Fit candidate statistical models to the data (e.g., GLM, 

GAM, Delta-lognormal GLM, Neural Networks, 

Regression Trees, Habitat based models, and Statistical 

habitat based models); 

Yes (GLM and GAM) 

(7) Evaluate the models using methods such as likelihood 

ratio, AIC, BIC or cross validation; 

Yes (see Table3 and 

Table6) 

(8) Evaluate if distributional assumptions are satisfied and if 

there is a consistent spatial/temporal distribution of 

residuals in CPUE standardization modeling;  

Yes (see Fig.5 and  

Fig.6) 

(9) Extract yearly standardized CPUE and standard error by 

a method that is able to account for spatial heterogeneity 

of effort, such as least squares mean or expanded grid. If 

the model includes area and the size of spatial strata 

differs or the model includes interactions between time 

and area, then standardized CPUE should be calculated 

with area weighting for each time step. Model with 

interactions between area and season or month requires 

careful consideration on a case by case basis; 

Yes (see 2.3 Yearly 

trend extraction) 
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(10) Recommend a time series of yearly standardized CPUE 

and associated uncertainty; 

Yes (see Table 9) 

(11) Plot nominal and standardized CPUEs over time. 

Overall remarks Recommendations 

Yes (see Fig. 6) 

 

Tables: 

Table 1 Summary of explanatory variables used for GLM and GAM analysis 

Variables Cases Categorical or 

continuous 

Details Note 

Year Year 6 categories 6 years from 2014 to2019   

Month Month 9 categories 9 months from April to December  

Longitude Longitude_c 

 

22 categories Longitude<144° ; 144°≤Longitude＜

145°; 145°≤Longitude＜146;…, 

Longitude>164° 

at intervals 

of 1° 

Latitude Latitude_c 

 

12 categories Latitude<33°; 33°≤Latitude＜34°; 34°

≤Latitude＜35; …, Latitude >44° 

at intervals 

of 1° 

Sea surface 

temperature 

  SST 

SST_c 

   

spline 

12 categories 

 

SST<10℃;10℃≤SST＜11℃; 11℃≤

SST＜12℃; …, 19℃≤SST≤20℃; 

Sst>20℃ 

 

at intervals 

of 1℃ 

Sea surface 

height 

SSH 

 

continues（spline）   

 

 

Chlorophyll-a 

concentration 

Chla 

 

continues（spline）   

 

Vessel length Vessellength 

Vessellength_c 

spline 

10 categories 

Vessellength＜44m; 44m≤Vessellength

＜46m; …, Vessellength≥60m 

at intervals 

of 2m 

 

Table 2 Variance Inflation Factor (VIF) and Spearman correlation coefficient among explanatory variables 

coefficient/p 

value 

VIF Year  Month Longitude Latitude SST SSH  Chl-a vessellength 

Year  1.04  

 

0.0081 0.3231  <0.001  <0.001  0.3330  0.0487  <0.001  

Month 1.34  -0.0548 

 

<0.001  <0.001  <0.001  <0.001  0.0029  0.5529  

Longitude 1.39  0.0205 0.0682   <0.001  <0.001  <0.001  0.0015  0.2670  
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Latitude 1.70  0.0898 0.2298 0.4585 

 

<0.001  <0.001  <0.001  <0.001  

SST 1.48  -0.1062 0.2487 0.0712 -0.3021   <0.001  <0.001  <0.001  

SSH 1.27  -0.0200 0.3463 -0.0558 -0.1043 0.3582 

 

0.0573  <0.001  

Chl-a 1.03  0.0408 -0.0616 0.0657 0.0757 -0.1433 -0.0393 

 

0.4543  

Vessellength 1.04  0.1160 0.0123 -0.0230 -0.0770 0.0988 0.0944 -0.0155 

 

1) Spearman correlation coefficient are under the slope line; p values are above the slope line. 
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Table 3 The best GLM model  

GLM model R2 BIC 

Explained 

deviance

（%） 

Ln(CPUE)~Intercept+Year+Month+Longitude_c+Latitude_c+SST

+SSH+Chla +Year:Month+ Year: Longitude_c 
0.3552 6313.59 59.59% 

 

Table 4 Anova test for best GLM model 

 Df Deviance Resid. Df Resid. Dev F Pr(>F)  

NULL   2335 1370.70    

factor(Year) 5 22.45  2331 1348.26 13.24 1.19E-10 *** 

factor(Month) 8 113.74  2323 1234.52 33.54 < 2.2E-16 *** 

factor(Longitude_c) 47 84.91  2276 1149.61 4.26 < 2.2E-16 *** 

factor(Latitude_c) 35 55.83  2241 1093.77 3.76 1.21E-12 *** 

SST 1 1.98  2240 1091.79 4.68 < 2.2E-16 *** 

SSH 1 1.45  2239 1090.34 3.42 0.0464 * 

Chla 1 0.81  2238 1089.53 1.92 0.0069 ** 

factor(Year):factor(Month) 29 73.61  2209 1015.91 5.99 < 2.2E-16 *** 

factor(Year):factor(Longitude_c) 124 132.02  2085 883.90 2.51 < 2.2E-16 *** 

Significant code: *** 0.001, **0.01, *0.05 

 

Table 5 The Five-fold cross validation for the best GLM. 

case cor_GLM_test MSE_GLM_test 

1 0.5247 1.3254 

2 0.5198 1.1578 

3 0.5219 1.2629 

4 0.5458 1.3142 

5 0.5392 1.1561 

The spearman’s correlation coefficient is showed in the table. 
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Table 6 The best GAM model  

GAM model R2 BIC 

Explained 

deviance

（%） 

Ln(CPUE)~Intercept+Year+Month+Longitude_c+Latitude_c+s(SS

T)+s(SSH)+s(Chla)+ Year:Month 
0.3851 5690.01 60.61% 
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Table 7 Anova test for best GAM model 

Parametric Terms: 

 df F P-value 
 

factor(Year) 5 7.141 1.04E-05 *** 

factor(Month) 8 16.602 < 2.2E-16 *** 

factor(Longitude_c) 47 2.618 1.95E-8 *** 

factor(Latitude_c) 35 3.113 3.04E-9 *** 

factor(Year):factor(Month) 31 5.294 < 2.2E-16 *** 

Approximate significance of smooth terms: 

 Edf Ref.df F p-value  

s(SST) 7.76  8.49  4.49  0.000158 *** 

s(SSH) 4.14  5.20  5.98  0.0048 * 

s(Chla) 7.72  8.53  3.65  0.00016 *** 

 Significant code: *** 0.001, **0.01, *0.05 

 

Table 8 The cross validation for the best GAM. 

case cor_GAM_test MSE_GAM_test 

1 0.6345 0.9357 

2 0.6615 0.9214 

3 0.6438 0.9579 

4 0.6946 0.9042 

5 0.6713 0.9316 

The spearman’s correlation coefficient is showed in the table. 

 

Table 9 Nominal and standardized CPUE from 2014 to 2019. 

Year 
Nominal 

CPUE 

SD of 

Nominal 

CPUE 

Standardized 

CPUE by 

GLM 

SD by 

GLM 
95% CI by GLM 

Standardized 

CPUE by 

GAM 

SD by 

GAM 
95% CI by GAM 

2014 22.59 13.68 19.24 11.14 [18.63 22.15] 19.57 8.84 [18.17 21.00] 

2015 18.61 11.91 15.66 6.81 [14.92 16.46] 15.10 5.56 [14.36 15.75] 

2016 16.41 10.28 14.40 3.70 [13.96 14.85] 14.34 3.54 [13.94 14.71] 

2017 15.47 9.99 13.45 5.65 [12.91 14.02] 13.29 5.33 [12.75 13.82] 

2018 16.48 10.05 14.61 4.05 [14.10 15.05] 14.45 3.41 [14.07 14.87] 

2019 19.24 12.43 17.08 7.69 [16.42 17.64] 16.85 6.57 [16.41 17.24] 

 

  



11 

Figures: 

 

 

Fig. 1 The main fishing area of China 

 

 

(a)                                                (b) 

Fig. 2 Distribution of catch (a) and fishing effort(b) for China Chub mackerel fishing fleets in the Northwestern 

Pacific Ocean from 2014 to 2019 
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Fig. 3 Correlation matrix of explanatory variables used in the analysis 

 

 

Fig. 4 Normal distribution checks, Q-Q plot and histogram of residuals for the GLM optimal model. 
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Fig. 5 Normal distribution checks, Q-Q plot and histogram of residuals for the GAM optimal model. 

 

 

Fig.6 Annual changes in nominal, GAM and GLM estimated standardized CPUEs.  

 


